Pandas GroupBy - GeeksforGeeks (2023)

Groupby is a pretty simple concept. We can create a grouping of categories and apply a function to the categories. It’s a simple concept but it’s an extremely valuable technique that’s widely used in data science. In real data science projects, you’ll be dealing with large amounts of data and trying things over and over, so for efficiency, we use Groupby concept. Groupby concept is really important because it’s ability to aggregate data efficiently, both in performance and the amount code is magnificent. Groupby mainly refers to a process involving one or more of the following steps they are:

  • Splitting : It is a process in which we split data into group by applying some conditions on datasets.
  • Applying : It is a process in which we apply a function to each group independently
  • Combining : It is a process in which we combine different datasets after applying groupby and results into a data structure

The following image will help in understanding a process involve in Groupby concept.
1. Group the unique values from the Team column

Pandas GroupBy - GeeksforGeeks (1)

2. Now there’s a bucket for each group

Pandas GroupBy - GeeksforGeeks (2)

3. Toss the other data into the buckets

Pandas GroupBy - GeeksforGeeks (3)

4. Apply a function on the weight column of each bucket.

Pandas GroupBy - GeeksforGeeks (4)

Splitting Data into Groups

Splitting is a process in which we split data into a group by applying some conditions on datasets. In order to split the data, we apply certain conditions on datasets. In order to split the data, we use groupby() function this function is used to split the data into groups based on some criteria. Pandas objects can be split on any of their axes. The abstract definition of grouping is to provide a mapping of labels to group names. Pandas datasets can be split into any of their objects. There are multiple ways to split data like:

  • obj.groupby(key)
  • obj.groupby(key, axis=1)
  • obj.groupby([key1, key2])

Note :In this we refer to the grouping objects as the keys.
Grouping data with one key:
In order to group data with one key, we pass only one key as an argument in groupby function.

Python3

# importing pandas module

import pandas as pd

# Define a dictionary containing employee data

data1 = {'Name':['Jai', 'Anuj', 'Jai', 'Princi',

'Gaurav', 'Anuj', 'Princi', 'Abhi'],

'Age':[27, 24, 22, 32,

33, 36, 27, 32],

'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj',

'Jaunpur', 'Kanpur', 'Allahabad', 'Aligarh'],

'Qualification':['Msc', 'MA', 'MCA', 'Phd',

'B.Tech', 'B.com', 'Msc', 'MA']}

# Convert the dictionary into DataFrame

df = pd.DataFrame(data1)

print(df)

Pandas GroupBy - GeeksforGeeks (5)

Now we group a data of Name using groupby() function.

Python3

# using groupby function

# with one key

df.groupby('Name')

print(df.groupby('Name').groups)

Output :

Pandas GroupBy - GeeksforGeeks (6)


Now we print the first entries in all the groups formed.

Python3

# applying groupby() function to

# group the data on Name value.

gk = df.groupby('Name')

# Let's print the first entries

# in all the groups formed.

gk.first()

Output :

Pandas GroupBy - GeeksforGeeks (7)


Grouping data with multiple keys :
In order to group data with multiple keys, we pass multiple keys in groupby function.

Python3

# importing pandas module

import pandas as pd

# Define a dictionary containing employee data

data1 = {'Name':['Jai', 'Anuj', 'Jai', 'Princi',

'Gaurav', 'Anuj', 'Princi', 'Abhi'],

'Age':[27, 24, 22, 32,

33, 36, 27, 32],

'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj',

'Jaunpur', 'Kanpur', 'Allahabad', 'Aligarh'],

'Qualification':['Msc', 'MA', 'MCA', 'Phd',

'B.Tech', 'B.com', 'Msc', 'MA']}

# Convert the dictionary into DataFrame

df = pd.DataFrame(data1)

print(df)

Pandas GroupBy - GeeksforGeeks (8)

Now we group a data of “Name” and “Qualification” together using multiple keys in groupby function.

Python3

# Using multiple keys in

# groupby() function

df.groupby(['Name', 'Qualification'])

print(df.groupby(['Name', 'Qualification']).groups)

Output :

Pandas GroupBy - GeeksforGeeks (9)


Grouping data by sorting keys :
Group keys are sorted by default using the groupby operation. User can pass sort=False for potential speedups.

Python3

# importing pandas module

import pandas as pd

# Define a dictionary containing employee data

data1 = {'Name':['Jai', 'Anuj', 'Jai', 'Princi',

'Gaurav', 'Anuj', 'Princi', 'Abhi'],

'Age':[27, 24, 22, 32,

33, 36, 27, 32], }

# Convert the dictionary into DataFrame

df = pd.DataFrame(data1)

print(df)

(Video) Pandas Group By | Data Analysis in 3 Weeks | Arpit Jain | GeeksForGeeks Python

Pandas GroupBy - GeeksforGeeks (10)

Now we apply groupby() without sort

Output :

Pandas GroupBy - GeeksforGeeks (11)

Now we apply groupby() using sort in order to attain potential speedups

Python3

# using groupby function

# with sort

df.groupby(['Name'], sort = False).sum()

Output :

Pandas GroupBy - GeeksforGeeks (12)


Grouping data with object attributes :
Groups attribute is like dictionary whose keys are the computed unique groups and corresponding values being the axis labels belonging to each group.

Python3

# importing pandas module

import pandas as pd

# Define a dictionary containing employee data

data1 = {'Name':['Jai', 'Anuj', 'Jai', 'Princi',

'Gaurav', 'Anuj', 'Princi', 'Abhi'],

'Age':[27, 24, 22, 32,

33, 36, 27, 32],

'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj',

'Jaunpur', 'Kanpur', 'Allahabad', 'Aligarh'],

'Qualification':['Msc', 'MA', 'MCA', 'Phd',

'B.Tech', 'B.com', 'Msc', 'MA']}

# Convert the dictionary into DataFrame

df = pd.DataFrame(data1)

print(df)

Pandas GroupBy - GeeksforGeeks (13)

Now we group data like we do in a dictionary using keys.

Python3

# using keys for grouping

# data

df.groupby('Name').groups

Output :

Pandas GroupBy - GeeksforGeeks (14)

Iterating through groups

In order to iterate an element of groups, we can iterate through the object similar to itertools.obj.

Python3

# importing pandas module

import pandas as pd

# Define a dictionary containing employee data

data1 = {'Name':['Jai', 'Anuj', 'Jai', 'Princi',

'Gaurav', 'Anuj', 'Princi', 'Abhi'],

'Age':[27, 24, 22, 32,

33, 36, 27, 32],

'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj',

'Jaunpur', 'Kanpur', 'Allahabad', 'Aligarh'],

'Qualification':['Msc', 'MA', 'MCA', 'Phd',

'B.Tech', 'B.com', 'Msc', 'MA']}

# Convert the dictionary into DataFrame

df = pd.DataFrame(data1)

print(df)

(Video) Python | Pandas dataframe.aggregate() | GeeksforGeeks

Pandas GroupBy - GeeksforGeeks (15)

Now we iterate an element of group in a similar way we do in itertools.obj.

Python3

# iterating an element

# of group

grp = df.groupby('Name')

for name, group in grp:

print(name)

print(group)

print()

Output :

Pandas GroupBy - GeeksforGeeks (16)

Now we iterate an element of group containing multiple keys

Python3

# iterating an element

# of group containing

# multiple keys

grp = df.groupby(['Name', 'Qualification'])

for name, group in grp:

print(name)

print(group)

print()

Output :
As shown in output that group name will be tuple

Pandas GroupBy - GeeksforGeeks (17)

Selecting a groups

In order to select a group, we can select group using GroupBy.get_group(). We can select a group by applying a function GroupBy.get_group this function select a single group.

Python3

# importing pandas module

import pandas as pd

# Define a dictionary containing employee data

data1 = {'Name':['Jai', 'Anuj', 'Jai', 'Princi',

'Gaurav', 'Anuj', 'Princi', 'Abhi'],

'Age':[27, 24, 22, 32,

33, 36, 27, 32],

'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj',

'Jaunpur', 'Kanpur', 'Allahabad', 'Aligarh'],

'Qualification':['Msc', 'MA', 'MCA', 'Phd',

'B.Tech', 'B.com', 'Msc', 'MA']}

# Convert the dictionary into DataFrame

df = pd.DataFrame(data1)

print(df)

Pandas GroupBy - GeeksforGeeks (18)

Now we select a single group using Groupby.get_group.

Python3

# selecting a single group

grp = df.groupby('Name')

grp.get_group('Jai')

Output :

Pandas GroupBy - GeeksforGeeks (19)

Now we select an object grouped on multiple columns

Python3

# selecting object grouped

# on multiple columns

grp = df.groupby(['Name', 'Qualification'])

grp.get_group(('Jai', 'Msc'))

Output :

Pandas GroupBy - GeeksforGeeks (20)

Applying function to group

After splitting a data into a group, we apply a function to each group in order to do that we perform some operation they are:

  • Aggregation : It is a process in which we compute a summary statistic (or statistics) about each group. For Example, Compute group sums ormeans
  • Transformation : It is a process in which we perform some group-specific computations and return a like-indexed. For Example, Filling NAs within groups with a value derived from each group
  • Filtration : It is a process in which we discard some groups, according to a group-wise computation that evaluates True or False. For Example, Filtering out data based on the group sum or mean


Aggregation :
Aggregation is a process in which we compute a summary statistic about each group. Aggregated function returns a single aggregated value for each group. After splitting a data into groups using groupby function, several aggregation operations can be performed on the grouped data.
Code #1: Using aggregation via the aggregate method

Python3

# importing pandas module

import pandas as pd

# importing numpy as np

(Video) How to use groupby() to group categories in a pandas DataFrame

import numpy as np

# Define a dictionary containing employee data

data1 = {'Name':['Jai', 'Anuj', 'Jai', 'Princi',

'Gaurav', 'Anuj', 'Princi', 'Abhi'],

'Age':[27, 24, 22, 32,

33, 36, 27, 32],

'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj',

'Jaunpur', 'Kanpur', 'Allahabad', 'Aligarh'],

'Qualification':['Msc', 'MA', 'MCA', 'Phd',

'B.Tech', 'B.com', 'Msc', 'MA']}

# Convert the dictionary into DataFrame

df = pd.DataFrame(data1)

print(df)

Pandas GroupBy - GeeksforGeeks (21)

Now we perform aggregation using aggregate method

Python3

# performing aggregation using

# aggregate method

grp1 = df.groupby('Name')

grp1.aggregate(np.sum)

Output :

Pandas GroupBy - GeeksforGeeks (22)

Now we perform aggregation on agroup containing multiple keys

Python3

# performing aggregation on

# group containing multiple

# keys

grp1 = df.groupby(['Name', 'Qualification'])

grp1.aggregate(np.sum)

Output :

Pandas GroupBy - GeeksforGeeks (23)


Applying multiple functions at once :
We can apply a multiple functions at once by passing a list or dictionary of functions to do aggregation with, outputting a DataFrame.

Python3

# importing pandas module

import pandas as pd

# importing numpy as np

import numpy as np

# Define a dictionary containing employee data

data1 = {'Name':['Jai', 'Anuj', 'Jai', 'Princi',

'Gaurav', 'Anuj', 'Princi', 'Abhi'],

'Age':[27, 24, 22, 32,

33, 36, 27, 32],

'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj',

'Jaunpur', 'Kanpur', 'Allahabad', 'Aligarh'],

'Qualification':['Msc', 'MA', 'MCA', 'Phd',

'B.Tech', 'B.com', 'Msc', 'MA']}

# Convert the dictionary into DataFrame

df = pd.DataFrame(data1)

print(df)

Pandas GroupBy - GeeksforGeeks (24)

Now we apply a multiple functions by passing a list of functions.

Python3

# applying a function by passing

# a list of functions

grp = df.groupby('Name')

grp['Age'].agg([np.sum, np.mean, np.std])

Output :

Pandas GroupBy - GeeksforGeeks (25)


Applying different functions to DataFrame columns :
In order to apply a different aggregation to the columns of a DataFrame, we can pass a dictionary to aggregate .

Python3

# importing pandas module

import pandas as pd

# importing numpy as np

import numpy as np

# Define a dictionary containing employee data

data1 = {'Name':['Jai', 'Anuj', 'Jai', 'Princi',

'Gaurav', 'Anuj', 'Princi', 'Abhi'],

'Age':[27, 24, 22, 32,

33, 36, 27, 32],

'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj',

'Jaunpur', 'Kanpur', 'Allahabad', 'Aligarh'],

'Qualification':['Msc', 'MA', 'MCA', 'Phd',

'B.Tech', 'B.com', 'Msc', 'MA'],

'Score': [23, 34, 35, 45, 47, 50, 52, 53]}

(Video) Different Ways to Iterate Over Rows in Pandas DataFrame | GeeksforGeeks

# Convert the dictionary into DataFrame

df = pd.DataFrame(data1)

print(df)

Pandas GroupBy - GeeksforGeeks (26)

Now we apply a different aggregation to the columns of a dataframe.

Python3

# using different aggregation

# function by passing dictionary

# to aggregate

grp = df.groupby('Name')

grp.agg({'Age' : 'sum', 'Score' : 'std'})

Output :

Pandas GroupBy - GeeksforGeeks (27)

Transformation :
Transformation is a process in which we perform some group-specific computations and return a like-indexed. Transform method returns an object that is indexed the same (same size) as the one being grouped. The transform function must:

  • Return a result that is either the same size as the group chunk
  • Operate column-by-column on the group chunk
  • Not perform in-place operations on the group chunk.

Python3

# importing pandas module

import pandas as pd

# importing numpy as np

import numpy as np

# Define a dictionary containing employee data

data1 = {'Name':['Jai', 'Anuj', 'Jai', 'Princi',

'Gaurav', 'Anuj', 'Princi', 'Abhi'],

'Age':[27, 24, 22, 32,

33, 36, 27, 32],

'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj',

'Jaunpur', 'Kanpur', 'Allahabad', 'Aligarh'],

'Qualification':['Msc', 'MA', 'MCA', 'Phd',

'B.Tech', 'B.com', 'Msc', 'MA'],

'Score': [23, 34, 35, 45, 47, 50, 52, 53]}

# Convert the dictionary into DataFrame

df = pd.DataFrame(data1)

print(df)

Pandas GroupBy - GeeksforGeeks (28)

Now we perform some group-specific computations and return a like-indexed.

Python3

# using transform function

grp = df.groupby('Name')

sc = lambda x: (x - x.mean()) / x.std()*10

grp.transform(sc)

Output :

Pandas GroupBy - GeeksforGeeks (29)

Filtration :
Filtration is a process in which we discard some groups, according to a group-wise computation that evaluates True or False. In order to filter a group, we use filter method and apply some condition by which we filter group.

Python3

# importing pandas module

import pandas as pd

# importing numpy as np

import numpy as np

# Define a dictionary containing employee data

data1 = {'Name':['Jai', 'Anuj', 'Jai', 'Princi',

'Gaurav', 'Anuj', 'Princi', 'Abhi'],

'Age':[27, 24, 22, 32,

33, 36, 27, 32],

'Address':['Nagpur', 'Kanpur', 'Allahabad', 'Kannuaj',

'Jaunpur', 'Kanpur', 'Allahabad', 'Aligarh'],

'Qualification':['Msc', 'MA', 'MCA', 'Phd',

'B.Tech', 'B.com', 'Msc', 'MA'],

'Score': [23, 34, 35, 45, 47, 50, 52, 53]}

# Convert the dictionary into DataFrame

df = pd.DataFrame(data1)

print(df)

Pandas GroupBy - GeeksforGeeks (30)

Now we filter data that to return the Name which have lived two or more times .

Python3

# filtering data using

# filter data

grp = df.groupby('Name')

grp.filter(lambda x: len(x) >= 2)

Output :

Pandas GroupBy - GeeksforGeeks (31)


My Personal Notesarrow_drop_up

(Video) Select Multiple Rows and Columns From a Pandas DataFrame | GeeksforGeeks

Videos

1. Different Ways to Create a Pandas DataFrame | GeeksforGeeks
(GeeksforGeeks)
2. Groupby Function (Pandas Tutorials 08)
(Python Tutorials for Digital Humanities)
3. How to Remove Duplicate Rows in Pandas Dataframe? | GeeksforGeeks
(GeeksforGeeks)
4. Python | Pandas dataframe.sort_index() | GeeksforGeeks
(GeeksforGeeks)
5. Handling Missing Values in Pandas Dataframe | GeeksforGeeks
(GeeksforGeeks)
6. Creating a Pandas DataFrame From Lists | GeeksforGeeks
(GeeksforGeeks)
Top Articles
Latest Posts
Article information

Author: Gregorio Kreiger

Last Updated: 03/01/2023

Views: 6099

Rating: 4.7 / 5 (57 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Gregorio Kreiger

Birthday: 1994-12-18

Address: 89212 Tracey Ramp, Sunside, MT 08453-0951

Phone: +9014805370218

Job: Customer Designer

Hobby: Mountain biking, Orienteering, Hiking, Sewing, Backpacking, Mushroom hunting, Backpacking

Introduction: My name is Gregorio Kreiger, I am a tender, brainy, enthusiastic, combative, agreeable, gentle, gentle person who loves writing and wants to share my knowledge and understanding with you.